Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.942
1.
Cell Death Dis ; 15(5): 318, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710703

Glioblastoma stem cells (GSCs) play a key role in glioblastoma (GBM) resistance to temozolomide (TMZ) chemotherapy. With the increase in research on the tumour microenvironment, exosomes secreted by GSCs have become a new focus in GBM research. However, the molecular mechanism by which GSCs affect drug resistance in GBM cells via exosomes remains unclear. Using bioinformatics analysis, we identified the specific expression of ABCB4 in GSCs. Subsequently, we established GSC cell lines and used ultracentrifugation to extract secreted exosomes. We conducted in vitro and in vivo investigations to validate the promoting effect of ABCB4 and ABCB4-containing exosomes on TMZ resistance. Finally, to identify the transcription factors regulating the transcription of ABCB4, we performed luciferase assays and chromatin immunoprecipitation-quantitative PCR. Our results indicated that ABCB4 is highly expressed in GSCs. Moreover, high expression of ABCB4 promoted the resistance of GSCs to TMZ. Our study found that GSCs can also transmit their highly expressed ABCB4 to differentiated glioma cells (DGCs) through exosomes, leading to high expression of ABCB4 in these cells and promoting their resistance to TMZ. Mechanistic studies have shown that the overexpression of ABCB4 in GSCs is mediated by the transcription factor ATF3. In conclusion, our results indicate that GSCs can confer resistance to TMZ in GBM by transmitting ABCB4, which is transcribed by ATF3, through exosomes. This mechanism may lead to drug resistance and recurrence of GBM. These findings contribute to a deeper understanding of the mechanisms underlying drug resistance in GBM and provide novel insights into its treatment.


ATP Binding Cassette Transporter, Subfamily B , Activating Transcription Factor 3 , Brain Neoplasms , Drug Resistance, Neoplasm , Exosomes , Glioblastoma , Neoplastic Stem Cells , Temozolomide , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/genetics , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Exosomes/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 3/genetics , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Animals , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Mice , Gene Expression Regulation, Neoplastic/drug effects , Mice, Nude
2.
Cell Commun Signal ; 22(1): 266, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741139

Glioblastoma (GBM) is a type of brain cancer categorized as a high-grade glioma. GBM is characterized by limited treatment options, low patient survival rates, and abnormal serotonin metabolism. Previous studies have investigated the tumor suppressor function of aldolase C (ALDOC), a glycolytic enzyme in GBM. However, it is unclear how ALDOC regulates production of serotonin and its associated receptors, HTRs. In this study, we analyzed ALDOC mRNA levels and methylation status using sequencing data and in silico datasets. Furthermore, we investigated pathways, phenotypes, and drug effects using cell and mouse models. Our results suggest that loss of ALDOC function in GBM promotes tumor cell invasion and migration. We observed that hypermethylation, which results in loss of ALDOC expression, is associated with serotonin hypersecretion and the inhibition of PPAR-γ signaling. Using several omics datasets, we present evidence that ALDOC regulates serotonin levels and safeguards PPAR-γ against serotonin metabolism mediated by 5-HT, which leads to a reduction in PPAR-γ expression. PPAR-γ activation inhibits serotonin release by HTR and diminishes GBM tumor growth in our cellular and animal models. Importantly, research has demonstrated that PPAR-γ agonists prolong animal survival rates and increase the efficacy of temozolomide in an orthotopic brain model of GBM. The relationship and function of the ALDOC-PPAR-γ axis could serve as a potential prognostic indicator. Furthermore, PPAR-γ agonists offer a new treatment alternative for glioblastoma multiforme (GBM).


Glioblastoma , PPAR gamma , Temozolomide , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Animals , PPAR gamma/metabolism , Mice , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Disease Progression , Serotonin/metabolism , Signal Transduction/drug effects , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , PPAR-gamma Agonists
3.
CNS Neurosci Ther ; 30(4): e14711, 2024 04.
Article En | MEDLINE | ID: mdl-38644551

OBJECTIVE: To elucidate the relationship between USP19 and O(6)-methylguanine-DNA methyltransferase (MGMT) after temozolomide treatment in glioblastoma (GBM) patients with chemotherapy resistance. METHODS: Screening the deubiquitinase pannel and identifying the deubiquitinase directly interacts with and deubiquitination MGMT. Deubiquitination assay to confirm USP19 deubiquitinates MGMT. The colony formation and tumor growth study in xenograft assess USP19 affects the GBM sensitive to TMZ was performed by T98G, LN18, U251, and U87 cell lines. Immunohistochemistry staining and survival analysis were performed to explore how USP19 is correlated to MGMT in GBM clinical management. RESULTS: USP19 removes the ubiquitination of MGMT to facilitate the DNA methylation damage repair. Depletion of USP19 results in the glioblastoma cell sensitivity to temozolomide, which can be rescued by overexpressing MGMT. USP19 is overexpressed in glioblastoma patient samples, which positively correlates with the level of MGMT protein and poor prognosis in these patients. CONCLUSION: The regulation of MGMT ubiquitination by USP19 plays a critical role in DNA methylation damage repair and GBM patients' temozolomide chemotherapy response.


Antineoplastic Agents, Alkylating , DNA Methylation , DNA Modification Methylases , DNA Repair Enzymes , Drug Resistance, Neoplasm , Temozolomide , Tumor Suppressor Proteins , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , DNA Modification Methylases/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , DNA Methylation/drug effects , Mice, Nude , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Mice , Male , Female , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , DNA Repair/drug effects , Endopeptidases/metabolism , Endopeptidases/genetics , Xenograft Model Antitumor Assays , Ubiquitination/drug effects
4.
Cells ; 13(7)2024 Apr 04.
Article En | MEDLINE | ID: mdl-38607071

Adjuvant treatment for Glioblastoma Grade 4 with Temozolomide (TMZ) inevitably fails due to therapeutic resistance, necessitating new approaches. Apoptosis induction in GB cells is inefficient, due to an excess of anti-apoptotic XPO1/Bcl-2-family proteins. We assessed TMZ, Methotrexate (MTX), and Cytarabine (Ara-C) (apoptosis inducers) combined with XPO1/Bcl-2/Mcl-1-inhibitors (apoptosis rescue) in GB cell lines and primary GB stem-like cells (GSCs). Using CellTiter-Glo® and Caspase-3 activity assays, we generated dose-response curves and analyzed the gene and protein regulation of anti-apoptotic proteins via PCR and Western blots. Optimal drug combinations were examined for their impact on the cell cycle and apoptosis induction via FACS analysis, paralleled by the assessment of potential toxicity in healthy mouse brain slices. Ara-C and MTX proved to be 150- to 10,000-fold more potent in inducing apoptosis than TMZ. In response to inhibitors Eltanexor (XPO1; E), Venetoclax (Bcl-2; V), and A1210477 (Mcl-1; A), genes encoding for the corresponding proteins were upregulated in a compensatory manner. TMZ, MTX, and Ara-C combined with E, V, and A evidenced highly lethal effects when combined. As no significant cell death induction in mouse brain slices was observed, we conclude that this drug combination is effective in vitro and expected to have low side effects in vivo.


Amides , Antineoplastic Agents , Bridged Bicyclo Compounds, Heterocyclic , Glioblastoma , Pyrimidines , Sulfonamides , Animals , Mice , Temozolomide/pharmacology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Methotrexate/pharmacology , Methotrexate/therapeutic use , Cytarabine/pharmacology , Cytarabine/therapeutic use , Antineoplastic Agents, Alkylating/pharmacology , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Apoptosis
5.
Oncol Rep ; 51(5)2024 May.
Article En | MEDLINE | ID: mdl-38606513

Glioblastoma multiforme (GBM) is the most aggressive type of malignant brain tumor. Currently, the predominant clinical treatment is the combination of surgical resection with concurrent radiotherapy and chemotherapy, using temozolomide (TMZ) as the primary chemotherapy drug. Lidocaine, a widely used amide­based local anesthetic, has been found to have a significant anticancer effect. It has been reported that aberrant hepatocyte growth factor (HGF)/mesenchymal­epithelial transition factor (MET) signaling plays a role in the progression of brain tumors. However, it remains unclear whether lidocaine can regulate the MET pathway in GBM. In the present study, the clinical importance of the HGF/MET pathway was analyzed using bioinformatics. By establishing TMZ­resistant cell lines, the impact of combined treatment with lidocaine and TMZ was investigated. Additionally, the effects of lidocaine on cellular function were also examined and confirmed using knockdown techniques. The current findings revealed that the HGF/MET pathway played a key role in brain cancer, and its activation in GBM was associated with increased malignancy and poorer patient outcomes. Elevated HGF levels and activation of its receptor were found to be associated with TMZ resistance in GBM cells. Lidocaine effectively suppressed the HGF/MET pathway, thereby restoring TMZ sensitivity in TMZ­resistant cells. Furthermore, lidocaine also inhibited cell migration. Overall, these results indicated that inhibiting the HGF/MET pathway using lidocaine can enhance the sensitivity of GBM cells to TMZ and reduce cell migration, providing a potential basis for developing novel therapeutic strategies for GBM.


Brain Neoplasms , Drug Resistance, Neoplasm , Glioblastoma , Lidocaine , Humans , Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Lidocaine/pharmacology , Lidocaine/therapeutic use , Signal Transduction , Temozolomide/therapeutic use
6.
J Cancer Res Clin Oncol ; 150(4): 212, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38662247

BACKGROUND AND AIM: Morinda citrifolia fruit juice (noni) is an herbal remedy documented to have antioxidant properties. It has been suggested that prevention of carcinogen-DNA adduct formation and the antioxidant activity of NJ may contribute to the cancer preventive effect. In the present study, the antitumor activity of noni was investigated in the presence of cyclophosphamide (CYL) in vitro and in vivo. METHODS: In vitro breast cancer cells (MDA-MB-468) were used to measure the percentage of inhibition and the IC50. The in vivo antitumor activity of noni was studied by monitoring the mean survival time (MST), percentage increase in life span (%ILS), viable and non-viable cell count, tumor volume, body weight, and hematological and serum biochemical parameters in mice. Treatment with noni and CYL exhibited dose- and time-dependent cytotoxicity toward breast cancer cells. RESULTS: Individual treatment of noni and CYL exhibited dose- and time-dependent cytotoxicity on breast cancer cell lines, while in combination therapy of noni and CYL, noni enhances cytotoxic effect of CYL at 48 h than that at 24 h. Similar result was found in in vivo studies, the results of which revealed that alone treatment of CYL and noni suppressed tumor growth. However, combination treatment with CYL and noni presented better tumor inhibition than that of alone treatment of CYL and noni. On the contrary, CYL alone drastically attenuated hematological parameters, i.e., RBC, WBC, and Hb compared to normal and control groups, and this change was reversed and normalized by noni when given as combination therapy with CYL. Moreover, the levels of serum biochemical markers, i.e., AST, ALP, and ALT, were significantly increased in the control and CYL-treated groups than those in the normal group. In the combination treatment of noni and CYL, the above biochemical marker levels significantly decreased compared to CYL alone-treated group. CONCLUSIONS: The present study suggested that CYL treatment can cause serious myelotoxicity and hepatic injury in cancer patients. In conclusion, the combined use of noni with CYL potentially enhances the antitumor activity of CYL and suppresses myelotoxicity and hepatotoxicity induced by CYL in tumor-bearing mice.


Breast Neoplasms , Cyclophosphamide , Morinda , Animals , Cyclophosphamide/pharmacology , Cyclophosphamide/adverse effects , Mice , Humans , Female , Morinda/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Fruit and Vegetable Juices , Xenograft Model Antitumor Assays , Drug Synergism , Plant Extracts/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/adverse effects , Mice, Inbred BALB C , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/etiology
7.
Bioorg Med Chem Lett ; 105: 129730, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38583784

Chlorambucil is an alkylating drug that finds application towards chemotherapy of different types of cancers. In order to explore the possibility of utilization of this drug as an imaging agent for early diagnosis of solid tumors, attempt was made to synthesize a 99mTc complex of chlorambucil and evaluate its potential in tumor bearing small animal model. HYNIC-chlorambucil was synthesized by conjugation of HYNIC with chlorambucil via an ethylenediamine linker. All the intermediates and final product were purified and characterized by standard spectroscopic techniques viz. FT-IR, 1H/13C-NMR as well as by mass spectrometry. HYNIC-chlorambucil conjugate was radiolabeled with [99mTc]Tc and found to be formed with > 95 % radiochemical purity via RP-HPLC studies. The partition coefficient (Log10Po/w) of the synthesized complex was found to be -0.78 ± 0.25 which indicated the moderate hydrophilic nature for the complex. Biological behaviour of [99mTc]Tc-HYNIC-chlorambucil, studied in fibrosarcoma bearing Swiss mice, revealed a tumor uptake of about 4.16 ± 1.52 %IA/g at 30 min post-administration, which declined to 1.91 ± 0.13 % IA/g and 1.42 ± 0.14 %IA/g at 1 h and 2 h post-administration, respectively. A comparison of different [99mTc]Tc-chlorambucil derivatives (reported in the contemporary literature) formulated using different methodologies revealed that tumor uptake and pharmacokinetics exhibited by these agents strongly depend on the lipophilicity/hydrophilicity of such agents, which in turn is dependent on the bifunctional chelators used for formulating the radiolabeled chlorambucils.


Chlorambucil , Organotechnetium Compounds , Animals , Humans , Mice , Antineoplastic Agents, Alkylating/chemical synthesis , Antineoplastic Agents, Alkylating/chemistry , Antineoplastic Agents, Alkylating/pharmacology , Cell Line, Tumor , Chlorambucil/chemistry , Chlorambucil/chemical synthesis , Chlorambucil/pharmacology , Molecular Structure , Nicotinic Acids/chemistry , Nicotinic Acids/chemical synthesis , Organotechnetium Compounds/chemistry , Organotechnetium Compounds/chemical synthesis , Organotechnetium Compounds/pharmacokinetics , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Technetium/chemistry , Tissue Distribution
8.
J Cancer Res Ther ; 20(2): 718-725, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38687945

PURPOSE: The complex strategy of hypo-fractionated radiotherapy (HFRT) in combination with an immune checkpoint inhibitor (ICI) can stimulate a potential systemic antitumor response; however, the abscopal effect is always precluded by the tumor microenvironment, which may limit sufficient T-cell infiltration of distant nonirradiated tumors for certain kinds of inhibitory factors, such as regulatory T-cells (Tregs). Additionally, low-dose cyclophosphamide (LD-CYC) can specifically kill regulatory Tregs and strongly synergize antigen-specific immune responses, which could promote an abscopal effect. MATERIALS AND METHODS: We explored whether a triple regimen consisting of HFRT, ICI, and LD-CYC could achieve a better systemic antitumor response in bilateral mouse tumor models. RESULT: Our data demonstrate that LD-CYC combined with HFRT and antiprogrammed cell death ligand 1 (PDL-1) therapy could enhance the abscopal effect than only HFRT/antiPDL-1 or HFRT alone. Surprisingly, repeat CYC doses cannot further restrain tumor proliferation but can prolong murine overall survival, as revealed by the major pathologic responses. These results are associated with increased CD8 + effector T-cell infiltration, although LD-CYC did not upregulate PDL-1 expression in the tumor. CONCLUSIONS: Compared with traditional strategies, for the first time, we demonstrated that a triple treatment strategy remarkably increased the number of radiation-induced tumor-infiltrating CD8 + T-cells, effectively decreasing infiltrating Tregs, and promoting an abscopal effect. Thus, we describe a novel and effective therapeutic approach by combining multiple strategies to target several tumor-mediated immune inhibitory mechanisms.


Cyclophosphamide , Immune Checkpoint Inhibitors , T-Lymphocytes, Regulatory , Tumor Microenvironment , Animals , Cyclophosphamide/pharmacology , Cyclophosphamide/administration & dosage , Cyclophosphamide/therapeutic use , Mice , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Tumor Microenvironment/drug effects , Tumor Microenvironment/radiation effects , Tumor Microenvironment/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/radiation effects , Female , Combined Modality Therapy , Disease Models, Animal , Melanoma, Experimental/pathology , Melanoma, Experimental/immunology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/radiotherapy , Radiation, Ionizing , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Antineoplastic Agents, Alkylating/administration & dosage , Mice, Inbred C57BL , Humans , Cell Line, Tumor
9.
Cesk Slov Oftalmol ; 80(Ahead of print): 1001-1007, 2024.
Article En | MEDLINE | ID: mdl-38538290

Retinoblastoma is the most common primary malignant intraocular tumor in children. Seeding, specifically the dispersion of the tumor into the adjacent compartments, represents a major parameter determining the degree of retinoblastoma according to the International Classification of Retinoblastoma. In this article we focused on vitreous seeding, one of the main limiting factors in the successful "eye preservation treatment" of retinoblastoma. This article presents an overview of the history of vitreous seeding of retinoblastoma, established treatment procedures and new-research modalities. The introduction of systemic chemotherapy in the treatment of retinoblastoma at the end of the 1990s represented a significant breakthrough, which enabled the progressive abandonment of radiotherapy with its attendant side effects. However, the attained concentrations of chemotherapeutics in the vitreous space during systemic chemotherapy are not sufficient for the treatment of vitreous seeding, and the toxic effects of systemic chemotherapy are not negligible. A significant change came with the advent of chemotherapy in situ, with the targeted administration of chemotherapeutic drugs, namely intra-arterial and intravitreal injections, contributing to the definitive eradication of external radiotherapy and a reduction of systemic chemotherapy. Although vitreous seeding remains the most common reason for the failure of intra-arterial chemotherapy, this technique has significantly influenced the original treatment regimen of children with retinoblastoma. However, intravitreal chemotherapy has made the greatest contribution to increasing the probability of preservation of the eyeball and visual functions in patients with advanced findings. Novel local drug delivery modalities, gene therapy, oncolytic viruses and immunotherapy from several ongoing preclinical and clinical trials may represent promising approaches in the treatment of vitreous retinoblastoma seeding, though no clinical trials have yet been completed for routine use.


Retinal Neoplasms , Retinoblastoma , Child , Humans , Retinoblastoma/chemically induced , Retinoblastoma/drug therapy , Retinal Neoplasms/chemically induced , Retinal Neoplasms/drug therapy , Melphalan/adverse effects , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Vitreous Body/pathology , Intravitreal Injections , Retrospective Studies
10.
Org Biomol Chem ; 22(14): 2749-2753, 2024 04 03.
Article En | MEDLINE | ID: mdl-38502038

Fluorescent chemosensors offer a direct means of measuring enzyme activity for cancer diagnosis, predicting drug resistance, and aiding in the discovery of new anticancer drugs. O6-methylguanine DNA methyltransferase (MGMT) is a predictor of resistance towards anticancer alkylating agents such as temozolomide. Using the fluorescent molecular rotor, 9-(2-carboxy-2-cyanovinyl)julolidine (CCVJ), we synthesized, and evaluated a MGMT fluorescent chemosensor derived from a chloromethyl-triazole covalent inhibitor, AA-CW236, a non-pseudosubstrate of MGMT. Our fluorescence probe covalently labelled the MGMT active site C145, producing a 18-fold increase in fluorescence. Compared to previous fluorescent probes derived from a substrate-based inhibitor, our probe had improved binding and reaction rate. Overall, our chloromethyl triazole-based fluorescence MGMT probe is a promising tool for measuring MGMT activity to predict temozolomide resistance.


Antineoplastic Agents , Guanine/analogs & derivatives , Temozolomide , O(6)-Methylguanine-DNA Methyltransferase/genetics , DNA , Antineoplastic Agents, Alkylating/pharmacology
11.
BMC Cancer ; 24(1): 317, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38454344

BACKGROUND: Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer, and chemoresistance poses a significant challenge to the survival and prognosis of GBM. Although numerous regulatory mechanisms that contribute to chemoresistance have been identified, many questions remain unanswered. This study aims to identify the mechanism of temozolomide (TMZ) resistance in GBM. METHODS: Bioinformatics and antibody-based protein detection were used to examine the expression of E2F7 in gliomas and its correlation with prognosis. Additionally, IC50, cell viability, colony formation, apoptosis, doxorubicin (Dox) uptake, and intracranial transplantation were used to confirm the role of E2F7 in TMZ resistance, using our established TMZ-resistance (TMZ-R) model. Western blot and ChIP experiments provided confirmation of p53-driven regulation of E2F7. RESULTS: Elevated levels of E2F7 were detected in GBM tissue and were correlated with a poor prognosis for patients. E2F7 was found to be upregulated in TMZ-R tumors, and its high levels were linked to increased chemotherapy resistance by limiting drug uptake and decreasing DNA damage. The expression of E2F7 was also found to be regulated by the activation of p53. CONCLUSIONS: The high expression of E2F7, regulated by activated p53, confers chemoresistance to GBM cells by inhibiting drug uptake and DNA damage. These findings highlight the significant connection between sustained p53 activation and GBM chemoresistance, offering the potential for new strategies to overcome this resistance.


Brain Neoplasms , Glioblastoma , Humans , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , E2F7 Transcription Factor/metabolism , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Prognosis , Temozolomide/pharmacology , Temozolomide/therapeutic use , Tumor Suppressor Protein p53/genetics
12.
Cell Death Dis ; 15(3): 205, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38467631

Temozolomide (TMZ), a DNA alkylating agent, has become the primary treatment for glioma, the most common malignancy of the central nervous system. Although TMZ-containing regimens produce significant clinical response rates, some patients inevitably suffer from inferior treatment outcomes or disease relapse, likely because of poor chemosensitivity of glioma cells due to a robust DNA damage response (DDR). GINS2, a subunit of DNA helicase, contributes to maintaining genomic stability and is highly expressed in various cancers, promoting their development. Here, we report that GINS2 was upregulated in TMZ-treated glioma cells and co-localized with γH2AX, indicating its participation in TMZ-induced DDR. Furthermore, GINS2 regulated the malignant phenotype and TMZ sensitivity of glioma cells, mostly by promoting DNA damage repair by affecting the mRNA stability of early growth response factor 1 (EGR1), which in turn regulates the transcription of epithelial cell-transforming sequence 2 (ECT2). We constructed a GINS2-EGR1-ECT2 prognostic model, which accurately predicted patient survival. Further, we screened Palbociclib/BIX-02189 which dampens GINS2 expression and synergistically inhibits glioma cell proliferation with TMZ. These findings delineate a novel mechanism by which GINS2 regulates the TMZ sensitivity of glioma cells and propose a promising combination therapy to treat glioma.


Brain Neoplasms , Glioma , Humans , Temozolomide/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Neoplasm Recurrence, Local/drug therapy , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Epithelial Cells/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Early Growth Response Protein 1/genetics , Proto-Oncogene Proteins/pharmacology , Chromosomal Proteins, Non-Histone
13.
Cells ; 13(6)2024 Mar 11.
Article En | MEDLINE | ID: mdl-38534332

Glioblastoma, a deadly brain tumor, shows limited response to standard therapies like temozolomide (TMZ). Recent findings from the REGOMA trial underscore a significant survival improvement offered by Regorafenib (REGO) in recurrent glioblastoma. Our study aimed to propose a 3D ex vivo drug response precision medicine approach to investigate recurrent glioblastoma sensitivity to REGO and elucidate the underlying molecular mechanisms involved in tumor resistance or responsiveness to treatment. Three-dimensional glioblastoma organoids (GB-EXPs) obtained from 18 patients' resected recurrent glioblastoma tumors were treated with TMZ and REGO. Drug responses were evaluated using NAD(P)H FLIM, stratifying tumors as responders (Resp) or non-responders (NRs). Whole-exome sequencing was performed on 16 tissue samples, and whole-transcriptome analysis on 13 GB-EXPs treated and untreated. We found 35% (n = 9) and 77% (n = 20) of tumors responded to TMZ and REGO, respectively, with no instances of TMZ-Resp being REGO-NRs. Exome analysis revealed a unique mutational profile in REGO-Resp tumors compared to NR tumors. Transcriptome analysis identified distinct expression patterns in Resp and NR tumors, impacting Rho GTPase and NOTCH signaling, known to be involved in drug response. In conclusion, recurrent glioblastoma tumors were more responsive to REGO compared to TMZ treatment. Importantly, our approach enables a comprehensive longitudinal exploration of the molecular changes induced by treatment, unveiling promising biomarkers indicative of drug response.


Glioblastoma , Phenylurea Compounds , Pyridines , Humans , Antineoplastic Agents, Alkylating/pharmacology , Glioblastoma/drug therapy , Glioblastoma/pathology , Neoplasm Recurrence, Local/pathology , Temozolomide/pharmacology
14.
Cancer Lett ; 588: 216812, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38490327

The efficacy of temozolomide (TMZ) treatment in glioblastoma (GBM) is influenced by various mechanisms, mainly including the level of O6-methylguanine-DNA methyltransferase (MGMT) and the activity of DNA damage repair (DDR) pathways. In our previous study, we had proved that long non-coding RNA HOTAIR regulated the GBM progression and mediated DDR by interacting with EZH2, the catalytic subunit of PRC2. In this study, we developed a small-molecule inhibitor called EPIC-0628 that selectively disrupted the HOTAIR-EZH2 interaction and promoted ATF3 expression. The upregulation of ATF3 inhibited the recruitment of p300, p-p65, p-Stat3 and SP1 to the MGMT promoter. Hence, EPIC-0628 silenced MGMT expression. Besides, EPIC-0628 induced cell cycle arrest by increasing the expression of CDKN1A and impaired DNA double-strand break repair via suppressing the ATF3-p38-E2F1 pathway. Lastly, EPIC-0628 enhanced TMZ efficacy in GBM in vitro and vivo. Hence, this study provided evidence for the combination of epigenetic drugs EPIC-0628 with TMZ for GBM treatment through the above mechanisms.


Glioblastoma , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Dacarbazine/pharmacology , Cell Line, Tumor , DNA Repair Enzymes/genetics , O(6)-Methylguanine-DNA Methyltransferase/metabolism , DNA Breaks, Double-Stranded , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , Drug Resistance, Neoplasm , Enhancer of Zeste Homolog 2 Protein/genetics , Activating Transcription Factor 3/genetics
15.
Adv Sci (Weinh) ; 11(15): e2306027, 2024 Apr.
Article En | MEDLINE | ID: mdl-38353396

Temozolomide (TMZ) represents the cornerstone of therapy for glioblastoma (GBM). However, acquisition of resistance limits its therapeutic potential. The human kinome is an undisputable source of druggable targets, still, current knowledge remains confined to a limited fraction of it, with a multitude of under-investigated proteins yet to be characterized. Here, following a kinome-wide RNAi screen, pantothenate kinase 4 (PANK4) isuncovered as a modulator of TMZ resistance in GBM. Validation of PANK4 across various TMZ-resistant GBM cell models, patient-derived GBM cell lines, tissue samples, as well as in vivo studies, corroborates the potential translational significance of these findings. Moreover, PANK4 expression is induced during TMZ treatment, and its expression is associated with a worse clinical outcome. Furthermore, a Tandem Mass Tag (TMT)-based quantitative proteomic approach, reveals that PANK4 abrogation leads to a significant downregulation of a host of proteins with central roles in cellular detoxification and cellular response to oxidative stress. More specifically, as cells undergo genotoxic stress during TMZ exposure, PANK4 depletion represents a crucial event that can lead to accumulation of intracellular reactive oxygen species (ROS) and subsequent cell death. Collectively, a previously unreported role for PANK4 in mediating therapeutic resistance to TMZ in GBM is unveiled.


Brain Neoplasms , Glioblastoma , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/metabolism , Proteomics , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Drug Resistance, Neoplasm , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Line, Tumor
16.
Cancer Lett ; 586: 216666, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38311053

Glioblastoma (GBM) is a highly aggressive and treatment-resistant brain tumor, necessitating novel therapeutic strategies. In this study, we present a mechanistic breakthrough by designing and evaluating a series of abiraterone-installed hydroxamic acids as potential dual inhibitors of CYP17A1 and HDAC6 for GBM treatment. We established the correlation of CYP17A1/HDAC6 overexpression with tumor recurrence and temozolomide resistance in GBM patients. Compound 12, a dual inhibitor, demonstrated significant anti-GBM activity in vitro, particularly against TMZ-resistant cell lines. Mechanistically, compound 12 induced apoptosis, suppressed recurrence-associated genes, induced oxidative stress and initiated DNA damage response. Furthermore, molecular modeling studies confirmed its potent inhibitory activity against CYP17A1 and HDAC6. In vivo studies revealed that compound 12 effectively suppressed tumor growth in xenograft and orthotopic mouse models without inducing significant adverse effects. These findings highlight the potential of dual CYP17A1 and HDAC6 inhibition as a promising strategy for overcoming treatment resistance in GBM and offer new hope for improved therapeutic outcomes.


Androstenes , Brain Neoplasms , Glioblastoma , Steroid 17-alpha-Hydroxylase , Animals , Humans , Mice , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , DNA Damage , Drug Resistance, Neoplasm , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Histone Deacetylase 6/genetics , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Oxidative Stress , Temozolomide/pharmacology , Temozolomide/therapeutic use , Xenograft Model Antitumor Assays
17.
ACS Appl Bio Mater ; 7(3): 1810-1819, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38403964

Polymer-drug conjugates (PDCs) provide possibilities for the development of multiresponsive drug delivery and release platforms utilized in cancer therapy. The delivery of Temozolomide (TMZ, a DNA methylation agent) by PDCs has been developed to improve TMZ stability under physiological conditions for the treatment of glioblastoma multiforme (GBM); however, with inefficient chemotherapeutic efficacy. In this work, we synthesized an amphiphilic triblock copolymer (P1-SNO) with four pendant functionalities, including (1) a TMZ intermediate (named MTIC) as a prodrug moiety, (2) a disulfide bond as a redox-responsive trigger to cage MTIC, (3) S-nitrosothiol as a light/heat-responsive donor of nitric oxide (NO), and (4) a poly(ethylene glycol) chain to enable self-assembly in aqueous media. P1-SNO was demonstrated to liberate MTIC in the presence of reduced glutathione and release gaseous NO upon exposure to light or heat. The in vitro results revealed a synergistic effect of released MTIC and NO on both TMZ-sensitive and TMZ-resistant GBM cells. The environment-responsive PDC system for codelivery of MTIC and NO is promising to overcome the efficacy issue in TMZ-based cancer therapy.


Dacarbazine/analogs & derivatives , Glioblastoma , Prodrugs , Humans , Temozolomide/pharmacology , Temozolomide/chemistry , Glioblastoma/drug therapy , Nitric Oxide , Polymers , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Prodrugs/pharmacology , Prodrugs/therapeutic use
18.
CNS Neurosci Ther ; 30(2): e14599, 2024 02.
Article En | MEDLINE | ID: mdl-38332576

BACKGROUND: Glioblastoma is the most malignant primary brain tumor in adults. Temozolomide (TMZ) stands for the first-line chemotherapeutic agent against glioblastoma. Nevertheless, the therapeutic efficacy of TMZ appears to be remarkably limited, because of low cytotoxic efficiency against glioblastoma. Besides, various mechanical studies and the corresponding strategies fail to enhancing TMZ curative effect in clinical practice. Our previous studies have disclosed remodeling of glial cells by GSCs, but the roles of these transformed cells on promoting TMZ resistance have never been explored. METHODS: Exosomes were extracted from GSCs culture through standard centrifugation procedures, which can activate transformation of normal human astrocytes (NHAs) totumor-associated astrocytes (TAAs) for 3 days through detect the level of TGF-ß, CD44 and tenascin-C. The secretive protein level of ALKBH7 of TAAs was determined by ELISA kit. The protein level of APNG and ALKBH7 of GBM cells were determined by Western blot. Cell-based assays of ALKBH7 and APNG triggered drug resistance were performed through flow cytometric assay, Western blotting and colony formation assay respectively. A xenograft tumor model was applied to investigate the function of ALKBH7 in vivo. Finally, the effect of the ALKBH7/APNG signaling on TMZ resistance were evaluated by functional experiments. RESULTS: Exosomes derived from GSCs can activate transformation of normal human astrocytes (NHAs)to tumor-associated astrocytes (TAAs), as well as up-regulation of ALKBH7expression in TAAs. Besides, TAAs derived ALKBH7 can regulate APNG gene expression of GBM cells. After co-culturing with TAAs for 5 days, ALKBH7 and APNG expression in GBM cells were elevated. Furthermore, Knocking-down of APNG increased the inhibitory effect of TMZ on GBM cells survival. CONCLUSION: The present study illustrated a new mechanism of glioblastoma resistance to TMZ, which based on GSCs-exo educated TAAs delivering ALKBH7 to enhance APNG expression of GBM cells, which implied that targeting on ALKBH7/APNG regulation network may provide a new strategy of enhancing TMZ therapeutic effects against glioblastoma.


Brain Neoplasms , Exosomes , Glioblastoma , Adult , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/pathology , Astrocytes/metabolism , Exosomes/metabolism , Stem Cells/metabolism , Brain Neoplasms/genetics , Drug Resistance, Neoplasm , Cell Line, Tumor , Xenograft Model Antitumor Assays , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , AlkB Enzymes , Mitochondrial Proteins
19.
J Med Chem ; 67(4): 2425-2437, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38346097

Temozolomide (TMZ) is a DNA alkylating agent that produces objective responses in patients with neuroendocrine tumors (NETs) when the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is inactivated. At high doses, TMZ therapy exhausts MGMT activity but also produces dose-limiting toxicities. To reduce off-target effects, we converted the clinically approved radiotracer 68Ga-DOTA-TOC into a peptide-drug conjugate (PDC) for targeted delivery of TMZ to somatostatin receptor subtype-2 (SSTR2)-positive tumor cells. We used an integrated radiolabeling strategy for direct quantitative assessment of receptor binding, pharmacokinetics, and tissue biodistribution. In vitro studies revealed selective binding to SSTR2-positive cells with high affinity (5.98 ± 0.96 nmol/L), internalization, receptor-dependent DNA damage, cytotoxicity, and MGMT depletion. Imaging and biodistribution analysis showed preferential accumulation of the PDC in receptor-positive tumors and high renal clearance. This study identified a trackable SSTR2-targeting system for TMZ delivery and utilizes a modular design that could be broadly applied in PDC development.


Dacarbazine , Receptors, Somatostatin , Humans , Temozolomide/pharmacology , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Receptors, Somatostatin/metabolism , Tissue Distribution , O(6)-Methylguanine-DNA Methyltransferase/genetics , O(6)-Methylguanine-DNA Methyltransferase/metabolism , DNA Repair Enzymes/metabolism , DNA Modification Methylases/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Cell Line, Tumor
20.
Front Immunol ; 15: 1299044, 2024.
Article En | MEDLINE | ID: mdl-38384458

Cellular therapies, including chimeric antigen receptor T cell therapies (CAR-T), while generally successful in hematologic malignancies, face substantial challenges against solid tumors such as glioblastoma (GBM) due to rapid growth, antigen heterogeneity, and inadequate depth of response to cytoreductive and immune therapies, We have previously shown that GBM constitutively express stress associated NKG2D ligands (NKG2DL) recognized by gamma delta (γδ) T cells, a minor lymphocyte subset that innately recognize target molecules via the γδ T cell receptor (TCR), NKG2D, and multiple other mechanisms. Given that NKG2DL expression is often insufficient on GBM cells to elicit a meaningful response to γδ T cell immunotherapy, we then demonstrated that NKG2DL expression can be transiently upregulated by activation of the DNA damage response (DDR) pathway using alkylating agents such as Temozolomide (TMZ). TMZ, however, is also toxic to γδ T cells. Using a p140K/MGMT lentivector, which confers resistance to TMZ by expression of O(6)-methylguanine-DNA-methyltransferase (MGMT), we genetically engineered γδ T cells that maintain full effector function in the presence of therapeutic doses of TMZ. We then validated a therapeutic system that we termed Drug Resistance Immunotherapy (DRI) that combines a standard regimen of TMZ concomitantly with simultaneous intracranial infusion of TMZ-resistant γδ T cells in a first-in-human Phase I clinical trial (NCT04165941). This manuscript will discuss DRI as a rational therapeutic approach to newly diagnosed GBM and the importance of repeated administration of DRI in combination with the standard-of-care Stupp regimen in patients with stable minimal residual disease.


Glioblastoma , Glioma , Humans , Temozolomide/therapeutic use , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , NK Cell Lectin-Like Receptor Subfamily K , Immunotherapy, Adoptive , Glioma/drug therapy , Glioblastoma/metabolism , O(6)-Methylguanine-DNA Methyltransferase/genetics , O(6)-Methylguanine-DNA Methyltransferase/metabolism , O(6)-Methylguanine-DNA Methyltransferase/therapeutic use
...